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Abstract: Hydrogen abstraction reactions of the type X• + H-H′ f X-H + H′• (X ) F, Cl, Br, I) are studied
by ab initio valence bond methods and the VB state correlation diagram (VBSCD) model. The reaction
barriers and VB parameters of the VBSCD are computed by using the breathing orbital valence bond and
valence bond configuration interaction methods. The combination of the VBSCD model and semiempirical
VB theory leads to analytical expressions for the barriers and other VB quantities that match the ab initio
VB calculations fairly well. The barriers are influenced by the endo- or exothermicity of the reaction, but
the fundamental factor of the barrier is the average singlet-triplet gap of the bonds that are broken or
formed in the reactions. Some further approximations lead to a simple formula that expresses the barrier
for nonidentity and identity hydrogen abstraction reactions as a function of the bond strengths of reactants
and products. The semiempirical expressions are shown to be useful not only for the model reactions that
are studied in this work, but also for other nonidentity and identity hydrogen abstraction reactions that
have been studied in previous articles.

Introduction

One of the most fundamental reactions is hydrogen abstraction
that plays a significant role in a variety of important chemical
and biological processes.1-11 This added allure and the relative
simplicity of the process have attracted a significant theoretical
activity in this field.12-44 Understanding reactivity patterns of

hydrogen abstraction reactions has become therefore a goal of
considerable practical and conceptual values. Theorists and
practicing chemists have gained significant insight into the key
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features of the process by using different models based on a
variety of factors such as bond energies, Pauli repulsion, “polar
effects” (or ionic effects), steric effects, and so on.45-65

Nevertheless, the questions of the origin of barriers and the
characteristics of the transition state (TS) have remained the
central theoretical issues. In this sense, a suitablequantum
chemical modelshould provide a clear mechanism of barrier
and transition-state formation and at the same time lead to a
compact expression of the barrier with explicit dependence on
fundamental properties of the reactants. Such models have
traditionally emerged from valence bond (VB) theory and its
various semiempirical implementations.66-74

As part of a long-term program to model chemical reactivity
on the basis of modern VB methods, we have undertaken an
approach that uses the VB state correlation diagram (VBSCD)67

as the means to model and reproduce barriers computed by ab
initio VB methods, with an aim to establish gradually a general
structure-reactivity expression. As a first step, we applied the
breathing orbitals VB (BOVB) method75 to the calculations and
modeling of barriers of identity reactions, where the hydrogen
is transferred between two identical groups (namely, identity
reactions):70

A simple expression for the barrier was derived on the basis
of the VBSCD. In accord with previous conclusions,13,53-57 it
was shown that the organizing quantity of the identity barriers
is the singlet-triplet excitation energy of the X-H bond that
undergoes activation. Since the bond energy and the singlet-
triplet excitation are related by simple proportionality,the
identity barrier was found to correlate also with the bond
strength of the bond that is exchanged in the process. The “polar
effects”, due to the mixing of ionic structures in the TS, were
found to be significant, but were virtually constant in the
series.70,71

In a subsequent treatment,73 we applied the BOVB method
to the computations of barriers for the nonidentity hydrogen
transfer reactions between two different groups X and X′, in eq
2.

It was shown that the avoided crossing state (ACS), defined
as that point on the reaction profile in which the energies of
the reactant’s and product’s Lewis structures are identical,
formed a reasonable approximation to the BOVB transition state.
Using the ACS enabled the derivation of semiempirical expres-
sions for resonance energy, for height of crossing point, and
for the reaction barrier. These estimated VB quantities were
shown to match quite well the values calculated by ab initio
VB theory. Much as for the corresponding identity reactions,
here too the “polar effect” behaved as a quasi-constant quantity.

One of the appealing features of the VBSCD equation for
the nonidentity barrier was its transformation to an expression
akin to the Marcus equation,76,77 as a balance between an
intrinsic quantity and the reaction driving force (given by the
bond strength difference between the exchanging bonds, H-X
and H-X′). Using the VBSCD, the intrinsic quantity of the
barrier can be independently determined, again from singlet-
triplet excitation energies of the H-X and H-X′ bonds. Since
the bond energies are proportional to the singlet-triplet excita-
tions, one expects also good correlations of barriers with bond
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X• + H-X f X-H + X•

(X ) CH3, SiH3, GeH3, SnH3, and PbH3) (1)

X′• + H-X f X′-H + X•

(X′ * X ) CH3, SiH3, GeH3, SnH3, and PbH3) (2)

A R T I C L E S Su et al.

13540 J. AM. CHEM. SOC. 9 VOL. 126, NO. 41, 2004



energies in related reaction series as found amply by the
extended Mayer correlations.50

Although the VBSCD equation, derived in refs 67 and 70,
produces barriers in good agreement with the ab initio VB results
for the sets of reactions in eqs 1 and 2, there remains the question
of its general applicability. As a test of generality, we decide
to apply the BOVB method75 and a more recently developed
multistructure VB method, VBCI,78 to another series of
hydrogen abstraction reactions, shown in eq 3, and to test the
VBSCD equations on these reactions as well as on the entire
set in eqs 1-3.

The reactions in eq 3 have been widely studied in the field
of reaction dynamics and quantum chemistry,12-19 but to our
knowledge, the reactions have never been studied by means of
modern ab initio VB theory that is based on Heitler-London-
Slater-Pauling functionswith all the ionic contributions
included. These reactions vary from highly endothermic in the
case of iodide (X) I) to highly exothermic for the case of
fluoride (X ) F) and, as such, constitute a real challenge for
the VB computational methods as well as for the VBSCD model.
In brief, the aim of the present study is to apply the VBSCD
model to understand the origin of barriers in the hydrogen
transfer reactions specified by eq 3 and to derive general
analytical expressions that will enable one to predict the barriers
of these reaction and others in terms of easily accessible
properties of the reactants and products.

Theoretical Methods

The Spin-Free Form of Valence Bond Theory.The VB calcula-
tions use the spin-free formulation of quantum chemistry. The spin-
free approach for VB theory has been fully described elsewhere79,80

and will be sketched only briefly.
In spin-free VB theory, a many-electron wave function is expressed

in terms of spin-free VB functionsΦK,

ΦK may be a bonded tableau (BT) state,79 defined as

whereNK is a normalization factor, ers
[λ] is a standard projector of the

symmetric groupSN, defined through the irreducible representation
matrix elements,Drs

[λ](P), as

wherefλ is the dimension of the irreducible representation [λ], andΩK

is an orbital product,

that maintains a one to one correspondence with the usual VB structures,
by the arrangement of orbital indices.

With this permutation symmetry-adapted basis (eq 5), the Hamil-
tonian and overlap matrix elements are written, respectively, as eqs 8
and 9

The coefficientsCK in eq 4 are subsequently determined by solving
the usual secular equation HC) EMC. Since VB structures are not
mutually orthogonal, normalized structure weights are defined as:81

In the VBSCF method,82 both the VB orbitalsφki and structural
coefficientsCK are optimized simultaneously to minimize the total
energy. The VBSCF method takes care of the static electron correlation
but lacks dynamic correlation,75d an absolutely essential ingredient for
the goal of quantitative accuracy. As such, VBSCF results are only
qualitatively correct.

A VB method that incorporates dynamic correlation is the BOVB
method.75 BOVB improves the description of the VB structures by
allowing different orbitals for different structures. In this manner, the
orbitals can fluctuate in size and shape so as to fit the instantaneous
charges of the atoms on which these orbitals are located. The method
may be used at four possible levels, L-BOVB, SL-BOVB, D-BOVB,
and SD-BOVB, of increasing accuracy and sophistication. For the sake
of simplicity, the present article uses the level of D-BOVB, which is
sufficiently accurate for reaction barriers but less accurate than VBCI
for bond dissociation energies. For this reason, some of the discussion
later is restricted to the VBCI results (e.g., Tables 4, 7, and 8).

The VBCI method78 uses a configuration interaction technique to
improve the energetic of a VBSCF calculation. A subsequent VBCI
calculation involves the entire set of fundamental and excited VB
structures. Similar to molecular orbital-based CI methods, the excited
VB structures are generated by replacing occupied orbitals with virtual
orbitals. The virtual orbitals are defined, by use of a projector, so as to
be strictly localized on precisely the same atom as the corresponding
occupied orbitals.In this manner, the entire VBCI wave function can
be written as a linear combination of the same minimal number of VB
structures as in the VBSCF and BOVB methods. In the present article,
all calculations are carried out at the level of VBCISD that truncates
the CI expansion beyond double excitation. This level has been shown
to be definitely more accurate than the VBCIS level that involves only
monoexcitations.78

The VB Structure Set. The hydrogen transfer reactions in eq 3
involve exchange of the H-H bond by H-X and reorganization of
three electrons, which are required to attend the bond exchange. Scheme
1 shows all the modes of distributing three electrons among the three
atoms. Structures1, 3, and5 correspond to the bonding mode of the
reactants, while structures2, 4, and6 describe the products. Structures
7 and8 are excited states that can mix into the TS but do not contribute
to the reactants and products.

The Reaction Coordinate.The reaction coordinateQ is defined as
the bond order difference:70,73

where constanta in n(d) is taken from the corresponding value

(78) (a) Wu, W.; Song, L.; Cao, Z.; Zhang, Q.; Shaik, S.J. Phys. Chem. A
2002, 106, 2721-2726. (b) Song, L.; Wu, W.; Hiberty, P. C.; Danovich,
D.; Shaik, S.Chem.-Eur. J. 2003, 9, 4540-4547. (c) Song, L.; Wu, W.;
Zhang, Q.; Shaik, S.J. Comput. Chem. 2004, 25, 472-478.

(79) Wu, W.; Mo, Y.; Cao, Z.; Zhang, Q. A Spin-Free Approach for Valence
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Ed.; Elsevier: Amsterdam, 2002; pp 143-185.
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X• + H-H′ f X-H + H′• (X ) F, Cl, Br, I) (3)

Ψ ) ∑
K

CKΦK (4)

ΦK ) NK er1
[λ]ΩK (5)

ers
[λ] ) ( fλ

N!)
1/2

∑
P

Drs
[λ](P)P (6)

ΩK ) φk1
(1)φk2

(2)φk3
(3)‚‚‚φkN

(N) (7)

HKL ) 〈ΦK|H|ΦL〉 ) ∑
P∈SN

D11
[λ](P)〈ΩK|HP|ΩL〉 (8)

MKL ) 〈ΦK|ΦL〉 ) ∑
P∈SN

D11
[λ](P)〈ΩK|P|ΩL〉 (9)

WK ) ∑
L

CKMKLCL (10)

Q ) n1(d′) - n2(d), n(d) ) e-a(d-d0) (11)
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determined before for the identity reaction 1, for which the bond order
was defined as 0.5 at the TS.70,73 With this definition ofQ, the path
stretches from-1 to +1, as shown in Figure 1. Intrinsic reaction
coordinate (IRC) calculations provide the relationship between the bond
distancesd′ (of H-H) andd (of H-X). For a given value ofQ, the
individual d′ andd lengths can be determined by combining thed-d′
relationship derived from the IRC with their relationship in eq 11.

The VB State Correlation Diagram (VBSCD) Method. The
VBSCD67 method uses VB theory to provide chemical insight into the
barrier and other features of a chemical reaction. The central idea of
the VBSCD approach is that the barriers of chemical reactions arise
from an avoided crossing of VB configurations. The VBSCD in Figure
1 is composed of three curves: one is the adiabatic energy profile of
the ground state that involves all eight structures in Scheme 1, and the
other two are Lewis structures for the reactant and product, also called
diabatic curves, respectively. The diabatic curves are determined
variationally within the subset of VB structures in Scheme 1: covalent
structure1, the two ionic structures3 and 5 for reactants, covalent
structure2, and the ionic structures4 and6 for products.70 Thus, on
the reactant’s side of the diagram (Q ) -1), the diabatic curve that
represents the energy of the reactants’ VB structure is merged with the
ground state. This diabatic curve rises continuously asQ increases and
becomes an excited state on the product side of the diagram (Q ) 1).
This excited state is the image of the reactants in the products’ geometry.
Similarly, the other diabatic curve, featuring the energy change of the
products’ VB structure along the reaction coordinate, is drawn from
the right-hand to the left-hand side of the diagram and reaches an excited
state of the reactants. The quantityG is the promotion energy from the

ground state of the reactant to the excited state above it; an analogous
quantity is the promotion energy at the products side. The two
intersecting curves mix and avoid the crossing. If the ACS (Figure 1)
is a good enough approximation to the TS, then we may analyze the
barrier in terms of diabatic quantities, such as the promotion gap,G,
the height of the crossing point,∆Ec, and the resonance energy of the
TS, B.67,70

The Semiempirical VB Method.The semiempirical VB method73,74

can provide qualitative guides required to understand trends about the
chemical reactions. The energy of the bond is given by-λ, while the
nonbonded repulsion is given byλT, where the subscript, T, refers to
the triplet Pauli repulsion. We use these parameters to independently
quantify the features of the ACS, such as resonance energy,B, and the
height of crossing point,∆Ec.

Basis Sets, Geometries, and Computational Levels.The D95V*
basis set, of double-ú plus polarization quality, was used for X) F,
while for the heavier analogues we used the Los Alamos effective core
potential and matching basis set, LANL2DZ to which we added
d-polarization functions. All the electrons in the inner shell were frozen
at the level of Hartree-Fock method. The TSs were optimized at the
MP2 level, and the IRC path was used then as the “reaction coordinate”
for all the VB calculations. Subsequently, using eq 11 we located the
ACS and carried out VB computations on the transition states and
ACSs, as well as on the reactant’s state, to determine barriers. We also
performed CCSD(T) calculations on barriers of the reactions to compare
with VB results. All the VB calculations, including VBSCF, BOVB,
and VBCI levels, were done with the Xiamen Valence Bond (XMVB)
package of programs.83 The MP2 and CCSD(T) calculations were
carried out using GAUSSIAN 98.84

Results and Discussion

Avoided-Crossing State and Transition States.Ever since
the formulation of transition-state theory, a lot of effort has been
devoted to developing models for characterizing the TS because
it controls the height of the reaction barriers. One of us (S.S.)
developed an approach for defining the transition state of a
chemical reaction by introducing the concept of an ACS.85 The
ACS is that point on the reaction surface that lies directly
underneath the crossing point and is the state that arises by the
mixing of the two Lewis structures at their crossing point. As
such, the wave function of the ACS after avoided crossing is
well defined, starting from the Lewis state in eq 12.

HereN is a normalization factor, andΦL(r) and ΦL(p) are
the two Lewis structures, respectively, for the reactant and the
product, while the negative sign is the bonding combination
for this case that involves three-electron reorganization.

Subsequently, the Lewis state is further mixed with the
remaining two structuresΦi(ex), 7 and8, to generate the full

(82) (a) Van Lenthe, J. H.; Balint-Kurti, G. G.Chem. Phys. Lett. 1980, 76,
138-142. (b) Van Lenthe, J. H.; Balint-Kurti, G. G.J. Chem. Phys. 1983,
78, 5699-5713. (c) Verbeek, J.; Van Lenthe, J. H.J. Mol. Struct.
(THEOCHEM)1991, 229, 115-137.

(83) Song, L.; Wu, W.; Mo, Y.; Zhang, Q.XMVB, an ab Initio Nonorthogonal
Valence Bond Program; Xiamen University: Xiamen, China, 1999.

(84) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M.
A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann,
R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin,
K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi,
R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.;
Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz,
J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng,
C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.;
Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon,
M.; Replogle, E. S.; Pople, J. A.Gaussian 98, revision A.10; Gaussian,
Inc.: Pittsburgh, PA, 1998.

(85) (a) Shaik, S.; Ioffe, A.; Reddy, A. C.; Pross, A.J. Am. Chem. Soc. 1994,
116, 262-273. (b) Reddy, A. C.; Shaik, S.J. Chem. Soc., Faraday Trans.
1994, 90, 1631-1642.

Figure 1. A typical VBSCD for X• + H-H′ f X-H + H′•, exemplified
by using the VB calculations for X) Cl.

Scheme 1. VB Structure Set for Hydrogen Transfer Processes

ΨL ) N[ΦL(r) - ΦL(p)] (12)
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adiabatic state that corresponds to the ACS geometry:

The individual covalent and ionic components of the Lewis
state are fully optimized during the calculations, so that the final
adiabatic ACS is the variational mixture of all the eight
structures in the VB structure set in Scheme 1.

The purely covalent structures, also called Heitler-London
(HL) structures, cross along the IRC and thereby generate the
backbone of the state crossing in the VBSCD. The combination
of the HL structures at the crossing point is called the HL state,
given by eq 14:

Thus, while ΨHL accounts for the covalent three-electron
delocalization over the three reacting atoms,ΨL simply adds
the contribution of the ionic fluctuations (3-6) into the two-
electron bonds. The mixing of7 and 8 further contributes to
the ACS by adding the charge-transfer fluctuations from one
two-electron bond to the other. The energetic effect imparted
by mixing of the ionic structures is given by the resonance
energy due to covalent-ionic mixing in eq 15.70

This quantity is therefore a direct measure of the “polar effect”
in the ACS and hence also in the TS, provided the two states
are sufficiently close.

Results.Table 1 shows the energy barriers of the reactions,
of eq 3, with various methods. The well-established accurate
CCSD(T) method can be taken as a reference, while unrestricted
Hartree-Fock (UHF) and MP2 results are also included to
gauge the effects of electron correlation. The barriers of the
MO-based methods, UHF, MP2, and CCSD(T) are computed
only at the TS geometries, while VBSCF, BOVB, and VBCISD
calculations are carried out for both the TS and ACS geometries.
It can be seen from Table 1 that the UHF and VBSCF barriers
are poor. For F, the UHF barrier is 30.6 kcal/mol, and the
VBSCF is 24.4 kcal/mol; both are much higher than the 6.0

kcal/mol obtained with CCSD(T) and 6.4 kcal/mol with VB-
CISD. This is because the UHF method does not describe the
electronic correlation, while the VBSCF method lacks dynamic
correlation, which is essential for the accuracy of the calcula-
tions. The barriers of BOVB and VBCISD are in reasonably
good agreement with those of the MO-based CCSD(T) method.
The VBCISD barriers match CCSD(T) results very well; the
deviations between the CCSD(T) and VBCISD barriers are 0.4,
1.8, 0.7, and 0.1 kcal/mol for X) F, Cl, Br, I, respectively.
This reconfirms the previous observations that VBCISD is
equivalent to the level of CCSD(T) for describing electronic
correlation.78

The match between the barriers at the TS and ACS is not
uniform; at the VBCISD level the deviation spreads from 0.3
kcal/mol for Cl to 3.8 kcal/mol for I, while at the BOVB level,
the spread is from 0.2 kcal/mol for F to 4.4 kcal/mol for I.
However,in terms of relatiVe energies, the trend in the ACSs
reflects well the trend in the TSs. All levels of calculations share
the same trend for the barriers; it increases with the decrease
of electronegativity of X, which implies already that polar effects
in this series are variable.

Table 2 shows key geometric features of the TS and the ACS
at the VBCI and BOVB levels. Save some small differences,
the VBCI and BOVB results exhibit the same trends in the
geometry of the ACS. The bond lengths in the TS and ACS are
seen to differ by 3.8-18.0% for H-H′ and 2.5-9.6% for X-H.
Although these deviations are not negligible, it can be seen that
the sum of the distances in the TS and ACS is quasi-constant.
This means that the ACS lies on the reaction coordinate and is
displaced relative to the TS in a “Hammond fashion”,86 so that
the total length of the X- - -H- - -H′ species is conserved. As
shown previously, this is a general phenomenon, and one can
locate the ACS by starting at the TS and stepping along the
reaction vector, which is the eigenmode having an imaginary
frequency in the TS.85 The displacement is therefore linear, and
as such the ACS and the TS are both located within the avoided
crossing region,near the flat top of the TS region where the
energyVariation is moderate. In fact, the trends in the barriers

(86) Hammond, G. S.J. Am. Chem. Soc.1955, 77, 334-338.

Table 1. Computed Barriers (∆Eq) for the Nonidentity Reaction, X• + H-H′ f X-H + •H′; X ) (F, Cl, Br, I) (in kilocalories per mole)

UHF MP2 CCSD (T) VBSCF (TS) VBSCF (ACS) BOVB (TS) BOVB (ACS) VBCI (TS) VBCI (ACS)

F 30.6 8.3 6.0 24.4 24.4 7.6 7.4 6.4 4.5
Cl 24.2 16.1 16.9 31.7 31.5 18.9 18.2 18.7 18.4
Br 31.4 24.5 25.9 36.9 35.8 27.2 25.1 26.6 24.4
I 38.4 34.3 35.6 43.1 40.7 35.7 31.3 35.5 31.7

Table 2. Geometric Features of the TS and ACS for the Nonidentity Reaction, X• + H-H′ f X-H + •H′; X ) (F, Cl, Br, I)

geometric parameters

X TS ACS % deviationa (ACS vs TS) % extensionb (ACS)

d(H−H′) d′(X−F) d + d′ d(H−H′) d′(X−H) d + d′ % ∆(d) % ∆(d′) % ∆d/d0 % ∆d′/d′0

BOVB F 0.8553 1.2699 2.1252 0.8876 1.2375 2.1255 3.8 -2.5 20.4 32.5
Cl 0.9717 1.4437 2.4154 0.9065 1.4916 2.3972 -6.7 3.3 23.0 17.0
Br 1.1512 1.5133 2.6646 0.9725 1.6148 2.5872 -15.5 6.7 31.9 12.8
I 1.2928 1.6736 2.9664 1.0606 1.7903 2.8509 -18.0 7.0 43.8 12.1

VBCI F 0.7728 1.3930 2.1657 0.8657 1.2591 2.1248 12.0 -9.6 17.4 34.8
Cl 0.9440 1.4632 2.4073 0.8934 1.5018 2.3953 -5.4 2.6 21.1 17.8
Br 1.1140 1.5324 2.6463 0.9652 1.6193 2.5845 -13.4 5.7 30.9 13.1
I 1.2586 1.6877 2.9463 1.0532 1.7946 2.8478 -16.3 6.3 42.8 12.4

a % ∆(d) ) 100[d(ACS) - d(TS)]/d(TS). b % ∆d/d0 ) 100[d(ACS) - d0]/d0.

ΨACS ) cLΨL + c7Φ7(ex) + c8Φ8(ex) (13)

ΨHL ) crΦHL(r) - cpΦHL(p) (14)

REcov-ion ) E(ΨACS) - E(ΨHL) (15)
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of the TS and ACS are the same and so are the geometric trends.
Thus, inspecting the H- - -H′ distance variation shows that the
bond gets increasingly longer in the series from X) F to X )
I, in both the TS and the ACS. This trend that follows the
Hammond86 postulate about the variation of the TS geometry
as a function of the reaction driving force further indicates the
kinship of the ACS and TS and provides a further incentive for
using the ACS as an approximation to the TS.

Table 2 shows also the extension values (in %) of the two
bonds in the ACS relative to the equilibrium bond lengths of
the ground-state molecules H-H′ and X-H. One can see that
the greater the extension values of H-H bond lengths, the higher
the barriers.

Table 3 lists structural weights of the VB structures at the
ACS. The weights of structures are categorized as covalent
(ωcov) and ionic (ωi); the latter is subdivided into ionic structures
that contribute to the bonds of reactants and products (r, p:
structures3-6 in Scheme 1) and excited ionic structures (ex:
structures7, 8). It can be seen that for all three levels the ACS
species are primarily covalent, but all have significant ionic
contributions that amount to as much as 30-43% of the total
weight. As X is varied from F to I, the ionicity is decreased,
while the covalency is increased. This phenomenon is also
manifested in the covalent-ionic resonance energy, REcov-ion,
which decreases from F toward I. Clearly, in this series the
“polar effect” is variable and follows the electronegativity of
X.

A Semiempirical VB Analysis. The Condition for Crossing
at the ACS. The ab initio VB results may be analyzed by use
of the following semiempirical VB ideas. The energies of two
Lewis structures at the ACS are equal, that is,

where the double dagger refers to the structures at their ACS
geometries. The condition for achieving this energy equality
can be derived using expressions of the semiempirical VB
method employed before in a similar analysis. As discussed in
previous articles,73 the energies of the two Lewis structures are
expressed in eqs 17a and 17b,

where λ is the bond energy, whileλT refers to the triplet
repulsion. The condition for crossing becomes then eq 18:

Table 4 shows the semiempirical quantities evaluated using
VBCI calculations on the ACS structures of this study. For the
VBCI method, it can be seen that in three cases the condition
of eq 18 is reasonably met, while for the HHF case there is a
discrepancy of 5.2 kcal/mol, which may reflect the neglect of
the electrostatic and steric interactions in eqs 17a and 17b.

Comparison of theλ values of the ACS with the bond
dissociation energies,De, of the ground-state molecules leads
to the conclusion that to attain the energy equality in the ACS
(eq 18), the stronger of the two bonds has to be weakened much
more than the weaker one. At the limit, we might consider that
the weak bond will retain its original strength while the strong
bond will have to stretch to achieve bond strength equality with
the weak bond. The case of X) I almost reaches this virtual
limit. Thus, we should expect thatthe properties of the TS (ACS)
would be mostly controlled by the weak bond.

The Resonance Energy of the ACS.The resonance energy
of the ACS is defined as

where the second term in the expression ofB is the energy of
ΦL(r) or ΦL(p) at the crossing point of the diabatic curves (see
Figure 1), while the first term is the energy of the ACS. If the
ACS is approximated only by the Lewis state (eq 12), a related
quantity isBL, which is called the resonance energy of Lewis
state and is given as

The differenceB - BL will account for the importance of
the mixing of the excited ionic structures (7 and8).

The resonance energies of the ACS,B, are collected in Table
5. For a given halogen X, one can see the following trend:
B(BOVB) ≈ B(VBCI) > B(VBSCF). Thus, while the VBCI
and BOVB values are very close to each other, the VBSCF
level underestimates all the resonance energies.87 Nevertheless,
irrespective of the method,B is seen to decrease generally from
F to I, but theB values of Cl and F are oddly almost identical.

E(ΦL(r), X• H-H)q ) E(ΦL(p), X-H •H)q (16)

E(ΦL(r), X• H-H′)q )

-λ(H-H′) + 0.5[λT(X,H) + λT(X,H′)]q (17a)

E(ΦL(p), X-H •H′)q )

-λ(H-X) + 0.5[λT(H,H′) + λT(X,H′)]q (17b)

-λ(H-H′)q + 0.5λT(X,H)q )

-λ(H-X)q + 0.5λT(H,H′)q (18)

Table 3. VB Calculated Quantities for the ACS: Weights (ω) of
Covalent and Ionic Structures, REcov-ion Values (in kilocalories per
mole)

X F Cl Br I

VBSCF ωcov 0.6168 0.6017 0.6391 0.6890
ωi(r,p) 0.3250 0.3193 0.2855 0.2413
ωi(ex) 0.0582 0.0790 0.0754 0.0697

BOVB ωcov 0.5706 0.5905 0.6241 0.6593
ωi(r,p) 0.3863 0.3776 0.3324 0.2988
ωi(ex) 0.0431 0.0319 0.0435 0.0420

VBCI ωcov 0.5704 0.6528 0.6621 0.7017
ωi(r,p) 0.3528 0.2645 0.2653 0.2321
ωi(ex) 0.0768 0.0823 0.0727 0.0662

REcov-ion VBSCF 39.7 34.3 26.7 19.5
BOVB 48.5 38.5 30.0 23.6
VBCI 49.4 36.4 29.1 22.1

Table 4. Semiempirical Values Obtained from VBCI Calculation in
the ACS (in kilocalories per mole)

F Cl Br I

H−F H−H H−Cl H−H H−Br H−H H−I H−H

λ 97.8 92.9 83.7 90.9 74.7 85.0 64.5 76.7
λT 91.2 111.5 115.6 104.5 107.6 88.4 91.2 72.0
Er -47.3 -33.1 -31.2 -31.1
Ep -42.1 -31.5 -30.5 -28.6
∆EST 361.2 248.7 315.9 248.7 259.2 248.7 217.3 248.7
De

a 127.3 97.4 94.9 97.4 80.7 97.4 68.3 97.4
De

b 140.2 109.4 107.2 109.4 93.8 109.4 81.1 109.4
∆Eq 4.5 18.4 24.4 31.7

a VBCI calculation.b Refernce 15a.

B ) E(ΨACS) - E(ΦL,cross) (19)

BL ) E(ΨL(ACS)) - E(ΦL,cross) (20)
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The BL quantity in Table 5 exhibits the same trend asB,
decreasing from F to I and being almost equal for F and Cl.
The difference quantity,B - BL, that accounts for the mixing
of the excited ionic structures is of the order of 4.1-9.6 kcal/
mol, which is more significant and more variable than previously
computed for the nonidentity series defined by eq 2, X′ * X )
CH3, SiH3, GeH3, SnH3, PbH3.73 Thus, once again we see in
the present series a clear trend of the “polar effect” that depends
on electronegativity.

Using semiempirical VB theory, we can derive an expression
for B, based on the mixing of the two VB structures. The details
are given in Appendix 2 of ref 73, while eq 21 shows the result:

Neglecting the long-range terms, the expression forB
becomes

Since the difference of [λ + λT]q between pairs (H,H′) and
(H,X) is small (see Table 4), we used an averageλ value forB.
The so estimated (eq 22)B values are presented in Table 5,
along with the VB calculated quantities. The match between
the calculated values to the estimated ones is seen to be
reasonably good.

Since theλ andλT parameters of the bonds (H-H or H-X)
can be approximated as half the singlet-triplet energy∆EST,
the expression for the resonance energy can be simplified as in
eq 23:

where the double dagger corresponds to the ACS geometry.
Considering the rough equality of the excitation energies for
the two bonds, in the ACS (seeλT VBCI values in Table 4) eq
23 can be used with an average of the two quantities.

Alternatively, using the fact that the weakest bond is not much
elongated in the ACS (see above), one can determineB as one-
half of the bond energy of the weaker of the two bonds, as in
eq 24:

The advantage of eq 24 (which is obviously restricted to
nonidentity reactions) over eqs 22 and 23 is that it deals with
an easily accessible quantity, the bond energy of a molecule in
its equilibrium geometry, while eqs 22 and 23 deal with
quantities that have to be evaluated at the ACS geometry. The
B values calculated directly from the VB calculations (see Figure
1) and from the semiempirical relations in eqs 22-24 are
collected in the last three lines in Table 5. It can be seen that
the semiempirical equations forB are quite consistent and lead
to values close to those calculated with BOVB and VBCI.

To further demonstrate the generality of the semiempirical
derivations, we gather in Table 9 the entire set of computed
and semiempirically estimatedB values for nonidentity reactions
(2) (X′ * X ) CH3, SiH3, GeH3, SnH3, and PbH3) and (3) (X
) F, Cl, Br and I), the former set arising from a previous study.73

Since the previous study was carried out with BOVB, the entire
set is given here only for this method. It is apparent that the
semiempirical eqs 22 and 24 work rather well for a highly
variable set of X, X′ groups.

Reaction Barriers. Modeling of reaction barrier is a primary
goal for a theoretical study. In this article, we use ACS to
characterize the TS and model the barrier. From Figure 1, the
barrier is given as:

where ∆Ec is the height of the crossing point andB is the
resonance energy discussed above.

The height of the crossing point is given by the energy
difference of the Lewis structure at the ACS geometry vs the
ground-state geometry (see Figure 1). As done for the resonance
energy, let us first use the semiempirical VB method to
rationalize the height of the crossing point∆Ec. Using the Lewis
structure with the H-H′ bond, the height of the crossing point
is given as:73

The values of∆Ec obtained from eq 26 are listed in Table 6.
It is shown that the semiempirical VB results match the ab initio
VBCI results; the errors are in the range of 1.2-3.5%.

An alternative way to evaluate the height of the avoided
crossing is from the VB parameters in VBSCD. For an identity
reaction, the height of the crossing point is related to the
promotion gap of the VBSCD as follows:67

where f is the fraction factor of the promotion gap,G, that
separates the two Lewis curves at their onset (Q ) (1) in Figure
1. For a nonidentity reaction, shown in Figure 1, the promotion
gapG and curvature factorsf are different for the reactants and
products. Another factor is the reaction driving force, given by

(87) This is a general tendency that can be easily understood in the simple case
of a resonance between two VB structures. For the diabatic curves, each
represented by a single VB stsructure, the VBSCF and BOVB levels are
equivalent. By contrast, these two levels become nonequivalent in the
ground state, which is described by two structures. In this latter state, the
breathing-orbital effect is at work and the BOVB energy is lower than the
VBSCF energy, thus yielding larger resonance energy as a systematic
tendency.

Table 5. VB Calculated Resonance Energy B in the ACS and
Semiempirical B Values Obtained from VBCI Calculation (in
kilocalories per mole)

X F Cl Br I

B VBSCF 40.5 42.8 37.9 31.8
BOVB 49.7 51.3 44.7 37.7
VBCI 49.0 49.0 43.6 36.5

BL VBSCF 35.4 35.6 31.7 26.7
BOVB 40.1 41.9 38.1 32.7
VBCI 40.0 41.8 38.0 32.4

B - BL VBSCF 5.1 7.2 6.2 5.1
BOVB 9.6 9.4 6.6 5.0
VBCI 9.0 7.2 5.6 4.1

B eq 22 48.7 47.4 43.0 37.1
eq 23 49.2 49.3 44.5 38.1
eq 24 48.7 47.5 40.4 34.2

B ) 1/3[λ(H-X) + 0.5λT(H,X) - 0.5λT(X,H′) -

λ(X-H′)]q (21)

B ) 1/3[λ(H-H′) + 0.5λT(H-H′)]q

) 1/3[λ(H-X) + 0.5λT(H-X)] q (22)

B ) 0.25∆EST(H-H′)q ) 0.25∆EST(H-X)q (23)

B ≈ 0.5D(H-H′), for X ) F;

B ≈ 0.5D(H-X), for X ) Cl, Br, and I (24)

∆Eq ) ∆Ec - B (25)

∆Ec ) λ(H-H)0 - λ(H-H′)q + 0.5[λT(X,H) + λT(X,H′)]q

(26)

∆Ec ) fG (27)
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the difference in the corresponding bond energies of reactants
and products:

Taking all these factors into a single equation, an expression
for the height of crossing point,∆Ec, was derived before as:73

where the average gapGa and fa are defined as:

A more compact expression can be given by neglecting the
quadratic term in eq 29 and takingG′/2Ga as∼1/2:

The heights of the crossing points∆Ec for the set of reactions
(3), as calculated by use of eqs 26, 29, and 31, are listed in
Table 6, with the deviations compared to the corresponding ab
initio VBCI computed values. It can be seen that eq 26
reproduces the ab initio computed values quite well. Remark-
ably, eq 29 that only uses fundamental parameters of the
VBSCD, which arise from properties of the reactants and
products in their equilibrium geometries, performs fairly well.
Equation 31, which is a simplified version of eq 29, is a little
less accurate, as expected, but correctly reproduces the tenden-
cies from X) F to X ) I. The same data for reaction 2, arising
from our previous studies, are listed in Table 10 later. A linear
regression analysis with all the data for the two reaction series
reveals that the semiempirically estimated heights of the crossing
point correlate well with the VB computed ones, e.g.,R2 values
are 0.9848 for eq 26, 0.9664 for eq 29, and 0.9610 for eq 31.
All in all, eq 31 appears to be a good approximation for eq 29
and reproduces ab initio results fairly well.

The quantitiesG, G′, and∆Erp are available directly from
the VB calculations and are shown in Table 7. Thef andf′ are
derived from the VB curves atQ ) 0.73 It can be seen that the
G values are virtually constant as they should be, since, in all
the reactions, these are related to the singlet-triplet excitation

energy of the H-H bond; the slight difference between F and
the others are due to basis sets. On the other hand, the quantity
G′ decreases down a column of the periodic table, since it
reflects the promotion energy of H-X bond, which decreases
from F to I. The average quantityfa is less variable, and its
values,fa ) 0.32-0.36, are approximately the same as those
previously studied73 and close also to the values in the identity
reactions.70 This quasi-constancy of the factorfa for a given
family of reactions, here the hydrogen abstraction reactions,
which has long been a working hypothesis in qualitative
applications of the VBSCD67,68model, is nicely confirmed here
and may lead, as will be seen later, to further simplified
semiempirical equations for estimating barrier heights.

Using eq 31, we can derive a compact expression for the
energy barrier:73

Equation 32 shows that the barrier is a balance between an
intrinsic term,faGa, and the reaction “driving force” term,∆Erp.
The validity of eq 32 can be appreciated by comparing entries
2 and 3 in Table 8, which displays some calculated barriers for
the set of reactions (3) with X) F, Cl, Br, and I, while
corresponding data for X) CH3, SiH3, GeH3, SnH3, and PbH3
from the previous study are displayed in Table 11 later. With
one exception for X) F (where eq 32 overestimates the barrier
by 4.3 kcal/mol), it can be seen that eq 32 reproduces the VB
calculated barriers with reasonable accuracy. This agreement
is graphically illustrated in Figure 2a, which shows a plot of
the VBSCD-derived barriers (eq 32) against the VB calculated
barriers for the entire set of identity and nonidentity reactions
in eqs 1-3.

It is interesting to compare eq 32 with the Marcus expression76

for the barrier, in terms of the intrinsic barrier,∆E0
q, and the

reaction energy,∆Erp, as shown in eq 33.

In the Marcus equation, the intrinsic barrier∆E0
q, which is the

“pure kinetic” barrier without the effect of the thermodynamics
of the process, is determined as the average of the component
identity barriers. However, the intrinsic barrier in the VBSCD
may be defined in explicit terms, by

Thus, the VBSCD barrier becomes eq 35:

Table 6. Comparison of Heights of the Crossing Points (in
kilocalories per mole) for the Nonidentity Reaction, X• + H-H′ f
X-H + •H′; X ) (F, Cl, Br, I), Computed by VBCI and Some
Semiempirical Model Equations

HHF HHCl HHBr HHI

∆Ec(VBCI) 53.4 67.4 67.9 68.4
∆Ec(eq 26) 52.7 65.1 66.6 67.6
% error (vs VBCI) -1.5 -3.5 -2.0 -1.2
∆Ec(eq 29) 57.2 68.9 69.4 73.1
% error (vs VBCI) 6.9 2.2 2.2 6.7
∆Ec(eq 31) 59.7 68.7 68.2 71.3
% error (vs VBCI) 11.6 1.9 0.4 4.1

Table 7. Reactivity Factors and Heights of the Crossing Points (in
kilocalories per mole) Calculated from the VBSCD and by Direct
VBCI Computations

X f f ′ G G′ ∆Ec ∆Erp fa Ga ∆Eq (eq 32)

F 0.37 0.28 163.0 303.3 53.5-29.9 0.32 233.4 10.7
Cl 0.36 0.32 167.2 229.7 67.4 2.5 0.34 198.3 19.7
Br 0.38 0.30 167.2 185.0 67.9 16.7 0.34 176.1 24.6
I 0.42 0.29 167.2 147.9 68.4 29.1 0.36 157.5 34.8

Table 8. Comparison of ab Initio VBCI Calculated Barriers with
Semiempirical Equations (in kilocalories per mole)

entry X,X′ H,F H,Cl H,Br H,I

1 ∆Eq (VB,ACS) 4.5 18.4 24.4 31.7

2 ∆Eq (VB,TS) 6.4 18.7 26.6 35.5

3 ∆Eq (eq 32) 10.7 19.7 24.6 34.8

4 ∆Eq (Marcus) 9.5 25.5 28.6 34.8

5 ∆Eq (eq 39) 11.3 17.9 27.4 35.6

6 ∆Eint
q (eq 38) 26.2 16.7 19.0 21.1

7 ∆Eint
q (eq 34) 25.7 18.4 16.3 20.2

∆Erp ) E(r) - E(p) ) D(H-H′) - D(X-H) (28)

∆Ec ) faGa + (G′/2Ga)∆Erp + (1/2Ga)∆Erp
2 (29)

Ga ) 0.5(G + G′), fa ) 0.5(f + f′) (30)

∆Ec ) faGa + 0.5∆Erp (31)

∆Eq(VBSCD) ) faGa + 0.5∆Erp - B (32)

∆Eq(Marcus)) ∆E0
q + 0.5∆Erp + ∆Erp

2/16∆E0
q (33)

∆Eint
q ) faGa - B (34)

∆Eq(VBSCD) ) ∆Eint
q + 0.5∆Erp (35)
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where it is described as the “pure kinetic” barrier, the intrinsic
barrier, attenuated by the reaction thermodynamic quantity.

Tables 8 and 11 as well as Figure 2b show the correlation
between eq 32 and the Marcus equation (eq 33). Clearly, eq 32
and the corresponding equation for the identity reaction (eq 34),
which are based on the VBSCD, capture the key factors
determining the barrier.

An added feature of the VBSCD equation is the ability to
calculate directly the intrinsic barrier quantity, using eq 34.
Owing to the quasi-constancy of thefa factor in hydrogen
abstraction reactions (see above), the intrinsic barrier is seen to
be determined only by the promotion gaps,G andG′, in Figure
1 (Table 7), and the resonance energyB. As noted already, the
gaps can be related to the corresponding bond energies by the
following relationship:

Similarly, the resonance energyB is related to the bond
energies of the weak bond as shown above in eq 24. Using
these relations, the intrinsic barrier is seen to depend on the
combination of bond energies as follows:

whereDW means the weaker bond energy. Taking the qualita-
tively derivedfa value of 1/3, eq 37 is written as follows:

whereDS is the stronger bond energy. Using eqs 35 and 38, an
approximate expression for barrier is given as:

As the reaction driving force, ∆Erp, is itself simply expressed
as((DS - DW) depending on whether the reaction is endo- or
exothermic, eq 39 expresses the barrier as a function of a two
easily accessible quantities: the bonding energies of the reactants
and products. The intrinsic barriers computed by eq 38 and the
VBSCD barrier computed by eq 39 are listed in Table 8. It can
be seen that they are in good agreements with the computed
VBCI values. Figure 3 shows the correlation between the
barriers of eq 39 and the computed VBCI barriers of the TS
(Figure 3a) and Marcus equation (Figure 3b). The plot shows
that eq 39 provides the direct insight into the relationship
between bond energy and reaction barrier.

Clearly, the general correlation further strengthens the
importance of the reaction energy as one of the determinants

Figure 2. VBSCD-derived barriers (eq 32) plotted (a) against the VB calculated barriers and (b) against the Marcus equation for the entire set of identity
and nonidentity reactions. Energies in kcal/mol.

Figure 3. VBSCD-derived barriers (eq 39) plotted (a) against the VB calculated barriers and (b) against Marcus equation for the entire set of identity and
nonidentity reactions. Energies in kcal/mol.

∆Eint
q ) K(DS - 0.5DW); K ) 1/3 (38)

∆E) K(DS - 0.5DW) + 0.5∆Erp; K ) 1/3 (39)

Ga ) 0.5 (G+ G′) ≈ D(H-H′) + D(H-X) (36)

∆Eint
q ) fa(D(H-H′) + D(H-X)) - 0.5DW (37)
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of the barrier. However, considering our other correlation of
the intrinsic barrier with bond energies, eq 38,it is apparent
that the fundamental factor of the barrier is the promotion
energy gap, in the VBSCD, that itself happens to correlate with
the bond energy. Thus, the promotion energy gap provides the
cause and causality behind the observed correlation of barriers
and bond energies.50

One last remark is in order concerning the value of theK
factor in eqs 38 and 39. This value is based on the calculated
fa factor as calculated for a number of H-abstraction reactions
at the VBCI or BOVB levels, in rather modest basis sets. Such
calculations are expected to exhibit only fair accuracy, and in
particular they would generally tend tooVerestimate reaction
barriers and underestimate bond strengths. This means that,
while the value 1/3 for the factorK is appropriate for correlating
barriers to bond strengths as calculated at a modest level, a
somewhat smaller value ofK is probably more appropriate for
correlating experimental quantities. In some experimental
systems deviations may occur because of changes of the
structure of the TS from a linear X- - -H- - -X′ to a bent
structure, which should change the values ofB. Be it as it may,
what we wish to stress by use of eq 39 is the existence of a
proportionality factor, whatever its value, in a simple expression
of the reaction barrier as a function of bond strengths. The results
of Mayer50 indicate that this eq 39 is globally correct.

Conclusions

The nonidentity hydrogen transfer reactions between H and
strongly electronegative groups have been modeled in this work
by the reactions X• + H-H′ f X-H + H′•, (X ) F, Cl, Br, I),
which exhibit a wide spectrum of barriers and endo- or

exothermicities. These reactions have been studied by means
of various ab initio VB methods, which advantageously provide
some insight to the origin of barriers. In this line, the VBSCD
model and a semiempirical VB theory have been applied to
relate the barriers to easily accessible properties of the reactants
and products, on the basis of the VB computational results.

It is not surprising that the VBSCF method cannot provide
quantitative accuracy for these kinds of reactions of strongly
electronegative atoms because of the lack of dynamic correla-
tion. The BOVB and VBCI methods can give good results,
comparable to CCSD(T) using the same basis sets. This shows
that the VB method with consideration of dynamic correlation
match MO calculations of post-HF methods in accuracy. The
VB calculations also permit a clear characterization of the “polar
effect”, which is due to the mixing of ionic structures in the
transition state. Clearly, in the above series the “polar effect”
is variable and follows the electronegativity of X.

The combination of the VBSCD model67 and semiempirical
VB theory leads to analytical expressions for the barriers, which
match the ab initio VBCI calculations fairly well. This agree-
ment is observed not only for the model reactions that are
studied in this work, but also for other identity and nonidentity
hydrogen abstraction reactions X′• + H-X f X′-H + X•, X
) (*) X′ ) CH3, SiH3, GeH3, and PbH3 that have been studied
in previous articles.70,71,73The barriers are seen to be governed
by two factors: the endo- or exothermicity of the reaction,∆Erp,
which is the driving force of the reaction, and a fundamental
parameter of the VBSCD model,Ga, the average singlet-triplet
gap of the bonds that are broken or formed in the reactions.
Furthermore, as these two parameters are both related to the

Table 9. Comparison of ab Initio BOVB Calculated B Values with Semiempirical Equations for Reaction 3 with X ) F, Cl, Br, I, and
Reaction 2a with X * X′ ) CH3, SiH3, GeH3, SnH3, PbH3 (in kilocalories per mole)

X• + H−H′ f X−H + H′• X′• + H−X f X′−H + X•

X,X′ F Cl Br I C,Si C,Ge C,Sn C,Pb Si,Ge Si,Sn Si,Pb Ge,Sn Ge,Pb Sn,Pb

B 49.7 51.3 44.7 37.7 40.0 38.9 33.7 31.4 38.8 34.2 31.5 35.0 32.4 31.9
BL 40.1 41.9 38.1 32.7 34.7 33.4 29.0 27.1 34.2 30.2 27.6 30.4 28.0 27.8
B (eq 22) 44.5 43.7 39.6 34.5 39.0 36.4 32.4 29.7 35.8 32.0 29.2 31.8 29.3 29.2
B (eq 24) 47.0 43.5 37.1 31.5 42.1 38.8 34.2 30.8 38.8 34.2 30.8 34.2 30.8 30.8

a Reference 73.

Table 10. Comparison of ab Initio BOVB Calculated ∆Ec Values with Semiempirical Equations for Reaction 2a with X * X′ ) CH3, SiH3,
GeH3, PbH3 (in kilocalories per mole)

X,X′ C,Si C,Ge C,Sn C,Pb Si,Ge Si,Sn Si,Pb Ge,Sn Ge,Pb Sn,Pb

∆Ec (VB) 70.5 71.6 72.0 72.6 60.7 60.2 59.6 55.5 54.3 49.8
∆Ec (eq 26) 74.4 72.0 74.5 73.3 57.1 59.7 58.8 54.3 52.8 46.1
∆Ec (eq 29) 70.1 70.9 69.8 70.2 61.1 59.5 58.8 55.1 53.5 48.9
∆Ec (eq 31) 70.5 71.1 70.3 70.5 60.9 59.2 58.2 55.2 53.5 48.8

a Reference 73.

Table 11. Comparison of ab Initio BOVB Calculated Barriers with Semiempirical Equations for Reaction 2a with X * X′ ) CH3, SiH3, GeH3,
SnH3, PbH3 (in kilocalories per mole)

X,X′ C,Si C,Ge C,Sn C,Pb Si,Ge Si,Sn Si,Pb Ge,Sn Ge,Pb Sn,Pb

∆Eq (VB ACS) 30.5 32.7 38.3 41.2 21.9 26.0 28.1 20.5 22.0 17.9
∆Eq (VB TS) 30.7 33.4 39.5 43.0 22.3 27.0 29.9 20.7 22.9 18.2
∆Eq (eq 32) 30.2 31.9 36.4 38.8 21.9 25.1 27.2 19.8 21.1 17.2
∆Eq (Marcus) 29.0 33.0 36.7 40.3 22.4 25.4 28.2 20.7 23.1 17.0
∆Eq (eq 39) 26.3 31.1 36.3 40.5 18.9 24.1 28.4 18.3 22.6 16.0
∆Eint

q (eq 38) 19.0 20.1 21.5 22.5 15.3 16.6 17.7 14.4 15.5 12.8
∆Eint

q (eq 34) 23.5 21.4 22.9 22.0 18.2 18.2 16.8 16.6 14.7 14.6

a Reference 73.
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bond strengths of the reactants and products, some simplifying
assumptions lead to a simple formula (eq 39)that expresses
the barrier for nonidentity hydrogen abstraction as a simple
function of the bond strengths of reactants and products.

The general VBSCD expression for the barrier bears some
resemblance with the Marcus equation in terms of∆Erp and an
intrinsic barrier, but the VBSCD model has the advantage of
relating the intrinsic barrier to simple properties of reactants
and products. The present work, as well as the results of previous
studies, shows that the VBSCD model67 captures the key factors
that determine the barriers of hydrogen abstractions and may
relate these barriers to easily accessible properties of the
reactants and products, by means of simple analytical expres-
sions.

Acknowledgment. The research at XMU was supported by
the Natural Science Foundation of China (Nos. 20225311,
20373052, 20021002) and the TRAPOYT of the Ministry of
Education of China. The research at HU was supported in part
by an Israel Science Foundation (ISF) grant to S.S.

Appendix

Table 9 shows a comparison of ab initio BOVB calculatedB
values with semiempirical equations for reactions 2 and 3. Table
10 shows a comparison of ab initio∆Ec values with semi-
empirical equations for reaction 2. Table 11 shows a comparison
of ab initio BOVB calculated barriers with semiempirical
equations for reaction 2.
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